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Abstract

This report concerns the production of the EnterpRAS, an entry to the 19th annual Intelligent 

Ground Vehicle Competition. When producing this autonomous vehicle, the authors drew upon 

past designs, and researched new technology, working as a team to create an innovative robot 

to perform the numerous challenges of the Competition. The report describes project methods, 

construction of the robot, electrical system design, sensing algorithms, software architecture, 

system integration, and safety, reliability and durability concerns. Because of a tight budget, the 

report emphasizes cost-effective solutions to challenging problem.



1. Introduction

Space: the final frontier. These are the continuing voyages of the starship Enterprise. 

Her ongoing mission: to explore strange new worlds, to seek out new life forms and new 

civilizations, to boldly go where no man has gone before.

 

So said the highly intelligent character Spock from the Star Trek universe [6]. Although he refers to the voyages 

of a fictional starship, the mission he describes can be applicable to any engineering endeavor. By finding out 

new, innovative ways to build an autonomous vehicle, map out and explore unknown landscapes, and design 

electrical and mechanical systems, we believe this project reflects Spock’s inspiring words. We named our robot 

the EnterpRAS as tribute to this inspiration as well as our organization’s name: The University of Texas IEEE 

Robotics and Automation Society (RAS).

 

The purpose of this report is to detail the work that the University of Texas IEEE Robotics and Automation 

Society team has done to build the EnterpRAS from the ground up as an entry to the 19th annual Intelligent 

Ground Vehicle Competition (IGVC). The rest of the report is structured as follows. Section 2 provides a high 

level project description. Section 3 explains the UT IEEE RAS team’s design process. Section 4 describes the 

materials and construction of the EnterpRAS. Section 5 describes the electrical system. Section 6 describes the 

software architecture and systems integration, including a microcontroller board designed in-house to control 

actuators and read rotation sensors. Section 7 details the EnterpRAS’s sensing algorithms, including mapping 

and vision. Section 8 addresses safety, reliability, and durability concerns. Section 9 concludes with an outline 

of outstanding work to be completed before the competition and with predictions for the competition.

2. Project Description

This section gives a brief overview of the produced robot as well as the motivation behind the project.

2.1 Product Summary

The EnterpRAS uses an approximate Ackermann steering drive system implemented in software. It receives 

input from a variety of sensors, including a digital compass, a planar laser rangefinder, a USB webcam, a GPS 

receiver, encoders and potentiometers. The wheel encoders provide odometry. The digital compass provides 

pitch, roll, and acceleration readings in addition to heading. Combined with the GPS receiver, these sensors 

are used to localize the robot in the world. The USB webcam feeds images to the vision algorithms. The laser 

rangefinder is mounted onto a tiling servo motor in order to provide 3D data.

 

We built a custom computer to match our computational and power needs of the autonomous robot. This 



computer interfaces with a microcontroller to control the motors and to obtain data from analog sensors as well 

as the encoders on each drive motor. The power distribution system of the EnerpRAS allows hot-swapping 

between powering off a wall socket or two 12 volt lead-acid batteries without being turned off. Fresh batteries 

can also be hot-swapped for drained batteries.

 

For an exact list of parts, consult Appendix A.

2.2 Motivation

IGVC presents a unique combination of computational, electrical, and mechanical challenges. These include 

developing algorithms to process and reason through large amounts of streaming sensor data in real time, 

creating an effective power distribution system to provide the computer, microcontroller, motors, and sensors 

with adequate power, and creating a mechanical frame to mount all components. All the while, the design must 

meet safety, reliability, and durability requirements. Each of these challenges will be addressed in forthcoming 

sections.

3. Design Process

This section describes how the UT IEEE RAS team is organized and how the team proceeds from initial concept 

to a final design.

3.1 Team Organization

The UT IEEE RAS team started this year’s project with a core group of 5 undergraduate students. The team self-

organized as an entirely student-run project with little input from any University faculty. Each team member’s 

individual tasks would pertain mostly to one or two subsystem. Starting in the beginning of the Spring 2011 

semester, we discussed the necessities of the competition in order to develop a product concept and figure out 

the requirements of the various subsystems. Several basic components of the physical part of this project which 

we needed to begin work on: the drive train, the electrical layout, and the computer. The group conducted one or 

two group meetings every week for the duration of the semester, and individual members also worked on their 

respective tasks during their free time.

3.2 Continuous (Re)Design and (Re)Evaluation

Our design sequence begins with high level block diagram of sensors, electronics, software and mechanical 

ideas. Many design decisions involved choosing commercially-off-the-shelf (COTS) hardware to achieve 

a layer of abstraction from low level devices. Due to a tight monetary budget, cost effectiveness has been a 

major concern throughout the design process. We often chose to reuse components from previous UT IEEE 

RAS projects even if newer and improved versions are available. After establishing a sufficient roadmap of 



the various sub-systems, the sequence begins an iterative loop of evaluating an integrated sub-section and 

redesigning when necessary.

 

Our approach differs from more traditional planning methods which requires more simulation and analysis of 

each decision and less re-evaluation of past decisions. Our organizational structure and time budgets required 

us to accelerate the analysis phase. To demonstrate proof-of-concept, we create a series of rapid prototypes to 

eventually achieve a functional design to utilize in our final system. Our quick design strategy allows us to have 

a working robot throughout many design stages. A functional prototype improved our time in the overall system 

evaluation.

Figure 1: Process Flowchart 
 

An example of this constant reevaluation is presented in Section 4.3.

4. Material Structure

This section describes the mechanical characteristics and construction of the frame and drive systems.

4.1 Frame

The frame is constructed of 1/16” thick 1” aluminum square tubing. The outside perimeter is 2 feet by 3 feet, 

exactly the smallest allowed for this competition. A sensor mast constructed of 1/16” thick 1” aluminum angle 

supports all of our various sensors as well as a servo-motor which changes the pitch of the lidar.

4.2 Drive Wheels

The rear wheels are 13.5” diameter with bearings on a stationary 5/8” steel shaft and a #35ANSI chain sprocket 

attached to the wheels by a custom aluminum hub. The DC motors which drive these by a chain are mounted 

separately.

4.3 Ackermann Steering



The front steering system is an Ackermann steering1 design controlled by a high torque motor. [8] Though not 

a perfect implementation of Ackermann steering2, our design ensures that the wheels are pointing in the desired 

direction and turn the autonomous vehicle with the minimum slipping. As an Ackermann design, instead of 

both set of front wheels turning around a common pivot, each wheel has its own axis of rotation close to the 

hub. This whole systems of rotation motion is controlled by a linkage between thee two hubs; the linkage is in 

turn driven by a bar directly connected to the high-torque motor. Furthermore, a potentiometer is attached to the 

axis of motor rotation to ensure accurate turning. Our design is efficient and accurate; however, we consistently 

ran into problems with structural/material strength. Since our Ackermann design is essentially driven by a bar 

mounted directly on the high-torque motor, that point of contact experience enormous bending stressing. In the 

earlier version of the vehicle design, aluminum bars experienced multiple yielding and structure failure. We 

have since then solved the problem with reinforcing the system with redundancy, and thicker/better placement 

of linkage/connection.

Due to budget constrains, we had to be sparse in our material usage / equipment purchase. Therefore, we often 

had to come up with innovative ways to manufacture the frames and steering system out of scrap materials we 

previously owned.

5. Electronic Design

5.1 Computer Design

We built a custom computer purposed to handle the computational and performance challenges of real-time 

robotics algorithms as well as Gazebo, a high-fidelity 3D robot simulator. We considered monetary, power, 

and physical space budget restrictions in choosing the components of our computer. The computer features a 

quad-core Intel i5 CPU, Fermi CUDA co-processor, 4GB of RAM and a 30 GB solid state drive3. It draws less 

than 150W under load (less than 25W when idle) and has a small physical footprint. This is advantageous on a 

battery-powered mobile robot. The total cost is less than $550. We successfully met all of our various budget 

considerations without sacrificing computational power.

5.2 Power Distribution

A diagram of our Power Distribution System (PDS) can be found in Appendix C. The function of a PDS 

is simple: to ensure that all components receive the electricity they need to operate at all times. Our PDS 

accomplishes this both efficiently and reliably.

5.2.1 Batteries and Voltages

1E.g., car-like steering.
2Most commercial cars operate perfectly fine with approximate Ackermann steering.
3For exact part descriptions, consult Appendix A.



The PDS must provide 24V to our motors, and 12V to the computer and other sensors. It is possible to 

accomplish this with a single 24V battery and a voltage regulator. Voltage regulation, however, can cause 

inefficiencies and power loss. Our PDS eliminates this inefficiency by instead using two 12V batteries in series. 

Our PDS operates off Pd-Acid batteries since they are rugged, cost-effective, and can supply the high current 

demands of the EnterpRAS’s motors.

5.2.2 Efficiency and Battery Life

The computer was designed with efficiency and battery life in mind. It uses a DC-DC power supply. The use of 

such a power supply instead of a traditional AC power supply eliminates the need for inverter (the addition of 

which would introduce large inefficiencies). This allows the EnterpRAS to reach power supply efficiencies of up 

to 96% for the computer. Furthermore, the computer peaks at under 150W under load and draws less than 25W 

when idle. If the motors are not in use, we expect a fully charged 17Ah Pd-Acid battery to last 3+ hours since 

we expect the system load to be low on average. Depending on the amount and speed of driving, we expect to 

get 1-2 hours of battery life.

5.2.3 Hot-Swap

The PDS was also designed with the ability to hot-swap in mind. The PDS board has four input ports for 

batteries to allow for either of the two batteries to be swapped out without the robot losing power. Additionally, 

our PDS has the ability to switch the 12V rail to wall power during periods of time in which the robot is not 

field testing. The switch is made without losing power to the computer or the sensors. The ability to hot-swap 

between various power sources allows the PDS to supply power reliably at all times. Our PDS also protects the 

devices it is attached to with fuses.

6. Software Architecture and Integration

The EnterpRAS runs Willow Garage’s Robot OS (ROS) Diamondback version on top of Ubuntu 10.10 

(Maverick). [5] A brief summary of ROS follows in Section 6.1, and the remaining subsections describe how 

various features of ROS are being used.

6.1 ROS Overview

ROS (Robot Operating System) provides libraries and tools to help software developers create 

robot applications. It provides hardware abstraction, device drivers, libraries, visualizers, 

message-passing, package management, and more.

 

The EnterpRAS’s software is organized as a collection of ROS nodes. Generally, each ROS node is responsible 

for a single piece of hardware or a single algorithm. ROS nodes communicate communicate with each other 

primarily through ROS topics, unidirectional many-to-many data streams. ROS nodes may also invoke 



ROS services offered by other nodes. ROS services are, in essence, remote procedure calls. We are using 

existing ROS drivers for most of our sensors, with the exceptions being the digital compass and our custom 

microcontroller.

6.2 Mircocontroller/Computer Interface

In order to communicate between the computer and various hardware-based peripherals such as the motor 

controllers, encoders, potentiometers, and servos we have decided to interface with a microcontroller through a 

USB port.

6.2.1 RASBoard

The EnterpRAS features the RASBoard, a custom microcontroller board to handle digital I/O with motors and 

encoders and analog input from potentiometers. The board was initially designed by a member of RAS in Fall 

of 2008. The board has undergone several upgrades and revisions, the latest of which happened in Fall of 2010. 

It features a Texas Instruments Stellaris 3S811 ARM Cortex M3 microcontroller operating at 50Mhz. The board 

exposes two dedicated motor ports, two dedicated encoder ports, four dedicated servo-motor ports, a dozen 

general purpose digital I/O, and four ADC input ports.

 

The microcontroller is loaded with custom firmware which takes velocity commands from the computer and 

controls the motors and servos accordingly. It also interprets raw wheel encoder signals and provides odometry 

to the computer. Implementing this system in software consists of two major parts: first, custom firmware 

running on the microcontroller, and a corresponding ROS node running on the computer sending and receiving 

data through a USB port.

6.3 Data Flow

A diagram depicting the data flow to and from hardware devices is available in Appendix D.

6.4 Logging

ROS provides excellent logging facilities. The UT IEEE RAS team uses the rosbag utility to collect sensor 

logs of raw sensor data and any other messages being passed between nodes. The logs can then be replayed 

by the rosbag utility as needed in order to aid development or debugging. The replayed logs can be analyzed 

directly as appropriate (eg, graphing estimated robot pose over time) or fed into higher-level nodes. Nodes do 

not differentiate between incoming logged data vs data coming directly from sensors.

6.5 Simulation

ROS also integrates well with Gazebo, a high fidelity 3D simulator. [1] The simulator uses Open Dynamics 

Engine, a rigid body physics simulator. [7] Gazebo uses a plugin architecture to tie in simulated sensors that 



produce ROS messages the same way a real sensor would. Higher level nodes cannot distinguish weather the 

data is coming from real or simulated sensors. All sensors on the real EnterpRAS have pre-existing plugins 

corresponding to each type of sensor. UT IEEE RAS wrote a special plugin which controls a simulated 

Ackermann drive vehicle since ROS does not yet have a Gazebo controller plugin matching the EnterpRAS’s 

drive system. UT IEEE RAS plans to release this plugin to the ROS community after the competition since 

there appears to be some demand for such a plugin. To summarize, Gazebo integrated with ROS allows the UT 

IEEE RAS team to cheaply (in terms of both time and money) set up arbitrarily complex and repeatable testing 

scenarios.

7. Sensing and Navigation

The EnterpRAS project focuses on achieving sophisticated perception through cost-effective sensors despite 

their inherent sacrifices in sensing quality. Once such perception is achieved, navigation can be achieved 

without a need for novel algorithms.

7.1 Localization

The robot’s position is estimated using a Kalman filter integrating estimates from wheel odometry, IMU sensor, 

and GPS sensor. Since the GPS sensor provides absolute position, the EnterpRAS mapping algorithms do 

not need to worry about localization drift over time so a computationally expensive SLAM algorithm is not 

required. The filter is implemented by the robot_pose_ekf ROS node available in the ROS navigation stack. [5]

7.2 Mapping

Autonomous ground vehicles traditionally rely on a two-dimensional perception and representation of the world. 

Although this approach can simplify some aspects of robotic mapping and reduce computational requirements, 

it is prone to losing important information, leading to incorrect behavior. For example, ground vehicles that rely 

on traditional planar rangefinders would detect a ramp as a wall, thus compromising liveness4 of the robot since 

it would be unable to proceed up the ramp out of fear of hitting a wall. Worse yet, such a robot might detect the 

supporting legs of a barrier but not the crossbeam, thus compromising safety. The EnterpRAS employs a richer 

representation to allow correct operation at IGVC.

7.2.1 Approach

In our approach, we deem it critical that the EnterpRAS can correctly and effectively deal with a three-

dimensional world. In order to do so, we map the world in three-dimensions, represented as a voxel grid. Our 

approach is derived from Marder-Eppstein [4], but we extend it to deal with semi-permeable obstacles (such as 

fences) and to utilize the full scanning range of the lidar. We extend the capabilities of a planar laser rangefinder 

4We borrow the terms liveness and safety from systems literature. Informally, liveness properties of a system guarantee that the system 
eventually does something good; safety properties guarantee that the system never does anything bad.



by mounting it on a tilting servo-motor, thus generating a 3D point cloud. The point cloud is used to build a 

voxel grid representation of the world. The raw lidar data along with the tilt angle of each scan and the robot’s 

position in the world is passed to a mapping algorithm which updates the voxel grid. Each scanned point in the 

cloud is ray-traced through all blocks in the voxel grid from the robot’s position to the detected end point of the 

ray. The traced blocks are updated according to Algorithm 1.

7.2.2 Implementation Considerations
In this algorithm, each block is in one of four states, so only two 

bits of storage are needed for each block. Thus, a column of 32 

blocks can be efficiently represented as a 64 bit integer. Bitwise 

AND and OR operations can be used to efficiently update blocks. 

32 blocks can represent a column of space 1.6 meters high (the 

height of the EnterpRAS) with a vertical resolution of 5 cm. In the 

interest of simplicity, the forward and lateral resolutions have also 

been defined as 5 cm. Since the update operations on the set of 

blocks traced by a ray are independent of each other, they can be 

performed in parallel. The EnterpRAS exploits this by 

implementing the algorithm on the CUDA co-processor in order to 

offload a significant computational burden from the CPU.

 
Some care must be taken to safely deal with the case where one or more rays passes straight through a block 

therefore clearing it while some other ray’s endpoint is in the block therefore marking it occupied. In this 

case, the block is not entirely FREE and must not be marked as such. This is accomplished in the CUDA 

multithreading model by introducing a barrier after the inner foreach loop which assures that updating the last 

block as SEMI_FREE or OCCUPIED only occurs after all the updates which might mark it as FREE.

7.3 Vision

The EnterpRAS uses a combination of several standard vision processing algorithms to detect the lane 

boundaries. The EnterpRAS vision nodes use OpenCV, an open source, state of the art computer vision 

library. [2] OpenCV is fully integrated with ROS, and it provides efficient implementations of standard vision 

algorithms. As an optimization, the newest version of OpenCV available as of this writing also includes support 

for CUDA-enabled GPUs to parallelize algorithms and speed up processing while freeing up the CPU. The 

EnterpRAS lane detection algorithms described in the following subsections are built on top of OpenCV vision 

processing primitives.

 

UT IEEE RAS developed two algorithms for detecting the lane boundaries and obstacles. One is based on 



edge detection, and the other on flood filling the region of the image corresponding to the lane. Each algorithm 

operates on single-channel images, so raw color images are first converted into 320x2405 grayscale images, or 

alternatively they can be converted into the hue-saturation-value color space and the algorithms can operate on 

the hue (color) channel. After the conversion to a single channel image, the image is further preprocessed with 

a Gaussian smoothing filter, and it undergoes an inverse perspective warp to transform the the image from a 

camera-centric coordiante frame to a robot-centric coordinate frame6.

7.3.1 Edge Detection 

Performing edge detection with OpenCV is simple. The 2011 algorithm for edge detection is based on 

the team’s 2010 lane detection code. The preprocessed image is processed with a Canny edge detector, as 

implemented in OpenCV. Since edges present in the processed image will correspond to either the painted, 

white lane boundaries or to the edges of obstacles, the processed image is interpreted as an occupancy grid 

where pixels marked as edges correspond to occupied blocks in the grid.

7.3.2 Flood Fill

Performing flood fill operations on an image with OpenCV is, again, simple. The flood fill algorithm is seeded 

with a pixel corresponding to a point on the lane just in front of the robot. By assuming that point is part of the 

lane, the algorithm marks all the points that correspond to the lane: given some pixels that are already known 

to correspond to the lane, all of their neighbors are checked; if a neighboring pixel being checked is within a 

small floating threshold of a neighboring pixel known to correspond to the lane, the new pixel is marked as part 

of the lane. This process identifies all the pixels that correspond to the lane since pixels that correspond to the 

lane boundary lines or obstacles would differ from pixels in the lane by a value greater than the threshold. The 

processed image is again interpreted as an occupancy grid where pixels that were marked as belonging to the 

lane are considered free.

7.3.3 Combining Estimates of Lane Boundaries

The two variations on preprocessing raw images (grayscale or hue channel) times two lane detection algorithms 

yields four estimators of the lane boundaries. The EnterpRAS must somehow determine which is the best 

estimate of the lane given each camera frame, and the best estimate of the local occupancy grid computed from 

each camera frame is incorporated into a global occupancy grid.

 

In practice, each estimator usually yields acceptably few false positives or false negatives in its computed 

5Although shrinking an image introduces some information loss, it was necessary in order to achieve good processing performance. The 
image size was chosen empirically in order to balance efficiency of processing with information loss.
6The EnterpRAS’s coordinate frame is that commonly used by roboticists: the x axis points forward, the y axis points left, and the z axis 
points up.



occupancy grid7. That is, blocks falsely detected as free usually do not produce a large enough gap for the 

robot to fit through. Likewise, blocks falsely detected as occupied can be usually planned around in a way that 

does not hinder progress, although the robot may have to slow down or adjust its trajectory. It is expected that 

successive occupancy grids should be very similar when an estimator is producing good estimates since it will 

be detecting (roughly) all the obstacles in needs to detect. When an estimator suddenly produces occupancy 

grids dissimilar to what it produced previously, it is an indication that the estimator suddenly started producing 

too many false positives, too many false negatives, or both. In this case, confidence in the quality of the 

estimator’s output drops and a different estimator which appears to be operating correctly (or at least less 

erratically) should be chosen.

 

By quantifying the similarites of successive occupancy grids yielding from each estimator, the EnterpRAS 

can decide on the best estimate at each time step and incorporate the estimate’s local occupancy grid into the 

global map. To pick the estimator with the highest similarity between its last and penultimate occupancy grids, 

the EnterpRAS picks the estimator with the smallest difference between the successive occupancy grids. Since 

occupancy grid cell states are either occupied or not, Hamming distance is used. In order to account for the fact 

that one of the estimators may naturally detect more obstacles, the difference is normalized (i.e., divided) by the 

number of cells which are occupied in both successive grids. Care must be taken to account for the motion of the 

robot in between the two frames. Each frame must be transformed from the local reference frame at the time the 

camera frame was captured to a global reference frame. ROS has a transform engine which can easily facilitate 

this transformation. When the two occupancy grids are compared in the global reference frame, some parts of 

each grid are not visible in the other if the robot moved. By design, this is the usual case, and care is taken to 

ignore these parts when calculating the relative difference between the occupancy grids.

7.4 Navigation

The EnterpRAS uses the ROS navigation stack for path planning. The ROS navigation stack takes as input a 2D 

map represented as an occupancy grid and a destination, and it outputs the velocity (translational and angular) 

that the robot should travel at each time step. In order to feed the navigation stack the expected input, the voxel 

grid is flattened to a 2D occupancy grid and the occupancy grid from the lane detector is superimposed. When 

flattening the voxel grid, the height of the highest OCCUPIED or SEMI_FREE block is given as the height 

of the occupancy grid. If no OCCUPIED or SEMI_FREE blocks are present, the height is 0. If a column with 

no OCCUPIED or SEMI_FREE blocks has more than 5 UNKNOWN blocks, the height is -1. The height map 

is then used to compute traversability. All cells with height 0 are traveriable. Cells are also traverasible if it is 

adjacent to a traversible cell whos height differs by at most 1. This marks ramps with a slope of less than 45 

degrees as traversible. The goal given to the navigation stack is the next GPS waypoint the robot is trying to 

7This has only been observed qualitatively since it would be too time consuming to manually identify false negatives and positives in order to 
quantify this observation.



reach.

8. Safety / Reliability / Durability

EnterpRAS has several features specifically designed to increase its safety. A warning strobe light will always 

be on whenever the robot is in autonomous mode. This lets everyone around it know that they may wish to be 

cautious around it. The voltage to the motors is controlled by two switches in series. The first switch is the large 

red button. We placed this switch in an easily accessible location so that the robot would be easily disabled in 

the event of a malfunction in the other systems. The second switch is a wirelessly controlled relay. It can be 

toggled remotely from the Nintendo Zapper that will be given to the judges. If either switch is toggled while 

the robot is moving, the robot will stop immediately. We have also added bumpers to all sides of the robot so 

that if the robot is not stopped in time, the damage from collisions is minimized. In terms of electrical safety, all 

voltages and connections on the PDS have been labeled. The voltages of each rail have also been color coded to 

reduce confusion. Additionally, we have taken precautions that no voltage rail is likely to touch the chassis.

9. Conclusion

The UT IEEE RAS team build the EnterpRAS to compete in the 19th annual Intelligent Ground Vehicle 

Competition. The team created an innovative robot emphasizing simplicity and cost-effectiveness in order to 

deal with the numerous and complex challenges of the IGVC competition.
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Appendixes

Appendix A: Bill of Material

Part Quantity Retail unit price Total cost to us

Intel Core i5-760 CPU 1 $209.99 $209.99

Gigabyte H55M-S2V motherboard 1 $69.99 $69.99

G.SKILL 4GB DDR3 RAM 1 $40.99 $40.99

Zotac GeForce GT 430 GPU 1 $79.99 $59.99

Kingston 30GB SSD 1 $85.99 $55.99

M4-ATX DC-DC 250W PSU 1 $89.50 $89.50

Construction Material (Aluminum and Steel) 1 $250.00 $150.00

ShaYang Ye DC Geared Motor 3 $200.00 $0.00

Wheels 4 $10.00 $0.00

Chain and Sprocket 2 $20.00 $5.00

Lead Acid Battery 6 $60.00 $0.00

Victor Motor Controller 3 $80.00 $0.00

RASBoard 1 $50.00* $0.00



OceanServer 5000-S Digital Compass 1 $270.00 $0.00

Logitech QuickCam Pro 9000 1 $90.00 $0.00

Ublox AEK-4H GPS Evaluation Kit 1  N/A $0.00

Hokuyo UHG-08LX Laser Rangefinder 1 $3950.00 $0.00

Total:  $5536.45 $681.45
Notes:

* This is the estimated cost of the raw parts of the board. The item is made in-house and is not available for 

retail.

Items marked with a cost to us of $0.00 are items that have been reused from old UT IEEE RAS projects.

Items marked with a cost to us lower than retail value are items that we purchased at a discounted price.

Appendix B: Work Division Breakdown

Student Major Year Focus of Contribution Approximate 
Work Completed

Nicu Ştiurcă Computer Science 4th Team Lead; Software 150

Josh James Electrical Engineering 2nd Electrical 125

Frank Weng Electrical Engineering 2nd Mechanical 100

Robby Nevels Electrical Engineering/ 
Computer Science

3rd Software 50

Alan Kwok Mechanical Engineering 2nd Mechanical 40

Emily Ledbetter Electrical Engineering 1st Electrical 15

Juan Ortiz Aerospace Engineering 4th Mechanical 15

Charlie Manion Mechanical 4th Mechanical 10

 



Appendix C: Power Distribution System

 

Appendix D: Data Flow Chart

 


